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Abstract. We study the existence of efficient points in a locally convex space ordered by a convex 
cone. New conditions are imposed on the ordering cone such that for a set which is closed and 
bounded in the usual sense or with respect to the cone, the set of efficient points is nonempty and the 
domination property holds. 
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I. Introduction 

Let E be a topological vector space and K C E be a nonempty convex cone. For 

x, y E E we write x ~<K Y if y - x E K and x <K Y if x ~<K Y and x ~ y. The relation 
~<K is reflective, transitive and, if K is pointed (i.e. l (K):= K N ( - K ) =  {0}), 

antisymmetric. Thus E is partially ordered by the cone K. 

Given a nonempty subset A s E, we say that an element x E A is an efficient 

(or Pareto-minimal, or nominated) point of A with respect to K if y ~<K x for 

some y E A then x ~</~ y. The set of efficient points of A with respect to K is 

denoted by Min(AIK). In the sequel, if no confusion occurs we shall write ~< and 

omit "with respect to K"  in the definition above. Note that if K is pointed, a 

point a E A  is an efficient point if there is no y E A ,  y r  such that y<.x  or, 

equivalently, if A x = {x}, where A x :=  A n (x - K),  a section of A at x. 

Throughout  the paper, R n denotes the n-dimensional Euclide space and R+ C 
R 1 is the set of nonnegative scalars. For a set A in E, clA and A c stand for its 

closure and complementation, respectively. 

Let us note that even for a finite set A C R  2, Min(AIK) may be empty. 

However,  Hartley [7] showed that Min(AIK ) is nonempty for any set A such that 

A N ( x -  clK) is nonempty compact for some x E E. When E is a topological 

vector space the nonemptiness of Min(AIK ) has been established by Corley [5] 

for the case when K is acute (i.e. clK is pointed), A is nonempty K-semicompact 
(that means every open cover of A of the form {(x, - ctK)C: x~ E A, a E ~ }  has 

a finite subcover) and by Borwein [2, 3] for any compact set A. Sterna-Karwat 

defined in [16, 17] a largest class cr of convex cones ensuring the existence of 
efficient points in compact sets: if E is a Hausdorff topological space, K belongs 

to cr if for every closed vector subspace L of E, K n L is a vector subspace 

whenever its closure cl(KN L )  is a vector subspace. Some general existence 
theorems in topological vector spaces have been obtained by Luc [10] under the 
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conditions that K is correct (i.e. clK + K\I(K)C K) and A has a K-complete 
section. Recall that a set A C E is said to be K-complete if it has no cover of the 
form {(x~ - clK)C: a E ~ }  with {x~} C A being a decreasing net (i.e. x~ < x~ for 
each a , /3  E ~ , / 3  < a) .  Any K-compact set (that is a set any cover of which of the 
form U s + C: a E ~ ,  U~ are open admits a finite subcover), in particular, any 
K-semicompact set or compact set is K-complete. 

Since compactness is a very strong demand on a given set, many authors tried 
to relax it in order  to obtain existence results in a less restrictive class of 
nonempty sets. In every case stronger conditions have to be placed on the coned. 
For  instance, it is shown in [4] that if K is a closed convex cone in a Banach space 
E, satisfying the or-property (i.e. there exists a continuous functional f on E with 
f(x) <~ 0 for each x C K such that for every e > 0 the set (x ~ K , - e  ~ f (x )} ,  if 
nonempty,  is relatively weakly compact in E)  then Min(A[K) is nonempty for 
every nonempty weakly closed set which is bounded from above. As for closed 
bounded sets, it should be remarked that the set of efficient points may be empty 
even when K is a closed convex pointed cone in a Banach space (see, e.g. [5]). 
However ,  Borwein [3] established that for such sets Min(A[K) is nonempty if K is 
closed and Danieil and E is boundedly order complete. Recall that K is Daniell if 
any decreasing net having a lower bound converges to its infimum and E is 
boundedly order complete if any bounded  decreasing net has an infimum (see 

[131). 
Some authors replaced the closedness and boundedness assumptions on A by 

the K-boundedness (that means there is a bounded set A 0 such that A C A 0 + K) 
and by the K-closedness (that means A + clK is closed). For instance, some 
existence results in R n [18] have been extended to a locally convex space E with 
the topology induced by a family (Pi: i E ~ }  of seminorms. Namely, in the case 
when E is quasicomplete and K is nuclear, the set of efficient points was shown to 
be nonvoid, firstly for a K-closed minorized (that means A ( a  + K for some 
a C E )  [8] and later, for a K-closed K-bounded set [14]. Recall that E is 
quasicomplete if every closed bounded subset of E is complete and K is nuclear if 

for each i ~ J  there is a function f~ in the dual space E' such that pi(x)<~fi(x), 
Vx ~E K. 

In this paper we study the existence of efficient points in a locally convex space 
for a nonempty set which is closed and bounded in the usual sense or with respect 
to a cone. Our results, Theorems 3.4 and 3.9, strengthen results of [3, 14] by 
weakening the hypothesis on the ordering cone yet maintaining the same 
hypothesis on the considered set. Our results are applicable not only to the case 
when K is not nuclear (which happens with the nonnegative orthants in the space 
L p and Orlicz spaces) but also to cases when some results of [3, 9, 10] cannot be 
applied. 

The paper  is organized as follows. In Section 2 we introduce a new class of 
cones with two special properties. Section 3 is devoted to the existence of efficient 
points nonempty sets which are closed bounded in the usual sense Or with respect 
to a cone. 
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2. Some Properties of Cones 

We begin this section by recalling some definitions that will be used later. Our 
terminologies and notations are as in ([15] p. 215). 

Let E be a locally convex space with the topology induced by a family {Pi: 
i E J }  of seminorms and ordered by a convex cone K. For a set A C E, [A] 
means the set (A + K ) n  ( A -  K).  For a given filter 0%, [0%] denotes the filter 
{[ff]: FE0%}. A net {x~: o ~ E ~ }  from E is called decreasing (increasing) if 
x~ <~x~(x~<~x~) for each a,  / 3 E ~ ,  /3~<~ and monotone if it is decreasing or 
increasing. 

We shall require the ordering cone K to have the following special properties. 

DEFINITION 2.1. We say that K has property (*) if the set (M + K) 7/(N - K) 
is bounded whatever nonempty bounded sets M and N are. 

DEFINITION 2.2. We say that K has property (**) if one of the following 
equivalent conditions holds: 

(i) Any bounded increasing net which is contained in K and in a complete 
subset of E has a limit; 

(ii) Any bounded monotone net which is contained in a complete subset of E 
has a limit. 

It  is clear that if the condition (ii) is satisfied, then so is the condition (i). We shall 
show that if the condition (i) holds, then so does the condition (ii). Let A = {%: 
a E 5f} is a bounded monotone net which is contained in a complete subset of E. 
We claim that the net A has a limit. Indeed, fix an index/3 E s and consider the 
net A' = { %  -ate:  a~>/3, a E S f }  (the net A'={a~ -%:  a~/3, a ESf})  i f A  is 
increasing (decreasing). It is clear that the net A' is bounded, increasing and is 
contained in K and in a complete subset of E. Since the condition (i) is satisfied, 
the net A' has a limit and so does the net A. 

R E M A R K  2.3. The reader can notice that if K '  is a cone contained in K and K 
has property (*) and/or  property (**), then so does K'. 

Before giving some examples of cones with properties (*) and (**) let us recall 
the definition of normal cones, one of the most important notions in the theory of 
ordered spaces. As the reader will see later, any normal cone has property (*). 

DEFINITION 2.4 ([15] p. 215). We say that K is normal if one of the following 
equivalent assertions holds: 

(a) 0//= [~]  where 0// is a neighborhood filter of zero; 
(b) For every filter 0% in E, lim 0% = 0 implies lim[0%] = 0; 
(c) There exists a generating family ~ of seminorms on E such that p(x)<~ 

p(x + y) whenever x, y E K and p @ ~. 



268 TRUONG XUAN DUC HA 

P R O P O S I T I O N  2.5. Any normal cone has property (*). 
Proof. Let  M, N be nonempty bounded sets in E and u E (M + K) fq (N - K).  

Then there exist m ~ M, n E N, k 1 ~ K, k 2 E K such that u = m + k I = n - k 2. 
Therefore ,  

0 ~ k  I = u  - m < - k l  + k 2 = n  - m .  

Let  ~ be the family of seminorms in E as in (c) of Definition 2.4. Hence we have 

O ~ p(u ~- m) <- p(n - m) 

for each p ~ 3 ~. Consequently, 

p(u) <~p(u - m) + p(m) <~p(n - m) + p(m) <~p(n) + 2p(m).  

Make use of the boundedness of M and N, we conclude that (M + K) fq (N - K)  
is bounded,  completing the proof. 

C O R O L L A R Y  2.5.1 Let K be a cone with a closed convex bounded base. Then K 
has property (*). 

Proof. First we show that K is normal. Let  o% be a filter in E convergent to 
zero and U is a neighborhood of zero. In view of ([10] Proposition 1.8, Chap. 1), 
there is a neighborhood of zero, say V, such that IV] C U. Since lim o~ = 0 we get 
V E o%. Therefore ,  [V] C [o%] and, by the definition of a filter, U E [~] .  Thus, 
l i m i t ]  = 0 and the cone K is normal. The assertion follows from Proposition 2.5. 

We now turn to property (**). It is easy to verify that if E is boundedly order  
complete and K is Daniell (see the definitions in Section 1) then K has this 
property.  In order  to give other examples of cones with property (**) we suppose 
that there is a family {f/: i E ~ }  of functions from K into R+ which can satisfy 
some of the following conditions: 

C1. fi(x) ~ pi(x ) for all x E K, i ~ ~. 
C2. For  each i ~ J ,  f (x)  tends to zero as x tends to zero, x ~ K. 
C3. For  each i E J ,  f ( . )  is increasing, i.e. f (x)  <~f(x + y )  for each x, y E K .  
C4. Each function f/(.), i ~ J  maps any bounded subset of K into a bounded 

subset of R+. 
C5. If for some i @ J ,  pi(xj) I> e > 0 for x~ E K, j = 1, 2 , . . . ,  then 

m - ~  j =  1 

P R O P O S I T I O N  2.6. (1) I f  conditions C1-C3 hold, then K has property (*). 
(2) I f  conditions C3-C5 hold, then K has property (**). 

Proof. 1. Assume that conditions C1-C3 hold and M, N are nonempty 
bounded sets in E. Recall [15, p. 26] that a set M in E is bounded if and only if 
for arbitrary sequences {mr} C M, {lj.} < R + ,  ~tj--~0 the sequence ljmj. tends to 
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zero. Therefore, given a sequence {vj) C (M + K) fq (N - K) with vj = mj + kj = 
n j - k } ,  mj E M ,  n j E N ,  kj E K ,  k} E K ,  j =  1, 2 , . . .  it suffices to show that 
limj__,=Ajvj = 0 for any nonnegative sequence {Aj} converging to zero. Since 
Aj(nj - mj)----> 0 and by virtue of condition C2 we have limj__,= f(Aj(nj - mj)) = 0. 
On the other hand, 

0 - mj)) = y/( jkj) f,(, j(kj + k;.)) = f / , ( A j ( n j  - mj)) 

for each i E g ,  j = 1, 2 , . . .  and, therefore, f//(Aj(vj - mi) ) tends to zero as j--> oo. 
By virtue of condition C1 and boundedness of M we get 

lim pi(Ajvj) = 0.  
j----> oz 

The last equation holds true for each i E J ,  hence Ajvj tends to zero as j tends to 
0% as it was to be shown. 

2. Assume the contrary that conditions C3-C5 hold but there is a bounded 
increasing net {xt} C K which is contained in a complete subset of E. Therefore, 
we can find a sequence {xt~ } C {xl}, k = 1, 2 , . . .  with I k ~ lk+ 1 such that xt~+l - xtk 
does not converge to zero. It follows then that the existence of a positive scalar e, 
an index i 0 E J  and a subsequence {Xmi } <- {xtk} such that pio(X,ni+i --X,,,i) >I e for 
i = 1, 2 , . . . .  By virtue of the monotonity of (xt} and condition C3 we obtain 

k 

k 

(m j} C ( l i ,12,""  ,Is} 

which together with condition C5 gives 

f , ( x  ) = o o  lim lk+l " 

k - - ~  0 

Thus f0 maps a bounded set (x~k) into a unbounded set, contradicting condition 
C4. 

Further we shall give the relationships between the just considered properties 
and the pointedness of a cone. Recall that K is pointed if K D ( - K )  = {0) and 
acute if cIK is pointed. 

PROPOSITION 2.7. K is pointed i f  one o f  the following conditions holds: 
(a) K has property (*); 
(b) K has a property (**); 
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(c) There is a family {f/: i E J }  of  nonnegative functions which are defined on 
K and satisfy condition C5. 

Proof. Assume the contrary that there exists a nonzero x ~ K (q ( - K ) .  
In the first case, the set {x, 2x , . . . }  C K (q ( - K )  is unbounded, contradicting 

property (*) (M = N = (0}). 
In the second case, the sequence 0~<x ~<-x ~<x ~<...  is monotone, bounded 

but does not converge to any point of E, a contradiction to property (**). 
Finally, since E is Hausdorff, there exists i 0 E J such that pio(X) =p~0( -x)>  0. 

Denote xj = x if j is odd and xj = - x  otherwise, we get 

( j - ~ l )  = ~f0(x) if m is odd ,  

fi0 _ x1 If0(0) otherwise, 

contradicting condition C5. 

PROPOSITION 2.8. K is acute if one o f  the following conditions holds: 
(a) K is normal; 
(b) There is a family {f/: i E J }  of  nonnegative functions which are defined on 

K and satisfy conditions C1-C3. 
Proof. If K is normal, then clK is normal either [15, p. 216] and the assertion 

follows from Proposition 2.7. 
Now assume that (b) holds but there are a nonzero x and nets {xj: ] E 5f}, {yj: 

] E S f }  C K satisfying x = l i m x j = l i m ( - y i ) .  Without loss of generality we can 
assume that pio(x])i> 7 > 0 for some positive scalar y and i 0 E J .  By virtue of 
conditions C1 and C3 we get 

0 < y <-pio(xj) <~fiio(xj) <-fiio(X j + y]). 

On the other hand, taking condition C2 into account we obtain lim fo(Xj + Yi) = O, 
a contradiction. 

Recall that K is said to be nuclear (or supernormal) if for each i E J there is a 
functional f in the dual space E '  such that pi(x)<~f(x), x E K. The following 
proposition shows that any nuclear cone has properties (*) and (**). Notice that 
the concept of nuclear cones defined in [1, 8] has many important applications in 
Pareto optimization in locally convex spaces, in the study of critical points for 
dynamical systems. . .  

PROPOSITION 2.9. Assume that K is nuclear. Then the family {fi: iE~r 
satisfies all conditions C1-C5 on both the cones K and clK and, therefore, these 
cones are normal, acute and have properties (*), (**). 

Proof. Observe that being in the dual space the functions f~ are linear and 
continuous. Hence they satisfy conditions C1-C4 on the whole clK. As for 
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condition C5, assume that there are elements xj~-K, j=  1 , 2 , . . .  such that 
pi(xj) t> e > 0 for some i E o~. Make use of the linearity of f and the nuclearity of 
K we obtain 

xj = fii(xj) >I pi(xj) >i mE. 
- j=1 j=l  

Thus conditions C5 holds on K. Analogously one can check that condition C5 
holds on clK. The assertion follows from Propositions 2.6-2.8. 

EXAMPLES 2.10. Let us give some examples of cones with properties (*) and 
(**). 

Example 2.10.1. Any nuclear cone has properties (*) and (**). In particular, 
nonnegative orthant in R n, the cone of nonnegative sequences in the Banach 
space l of summable sequences, the cone of nonnegative functions in the Banach 
space C[o.1 ] of continuous functions defined on [0, 1] and the cone of (almost 
everywhere) nonnegative functions in the Banach space Lt0.a ] of integrable 
functions defined on [0, 1] have properties (*) and (**). 

p Example 2.10.2. Let L[0,q, 1 < p  < ~  be the Banach space of functions x(.) on 
[0, 1] which are integrable with respect to Lesbegue measure /x and f0 ~ 
Ix(t)[ p d/~ < ~. Let K be the set of functions which are (almost everywhere) 
nonnegative. It was shown in [1, p. 98] that K has properties (*) and (**) but it is 
not nuclear. 

Example 2.10.3 Let (T, E, /z) be a non-atomic positive measure space. By an 
Orlicz function we understand a nonzero mapping qb: R1---~ [0, ~] that is convex, 
even, vanishing and continuous at zero and left-continuous on the whole R+. Let 
F (~ )  denote the space of all (equivalence classes)/x-measureable functions x from 
T into R 1. Given an Orlicz function qb, we define on F(/z) a convex functional 16 
by 

I.(x) = fr  @(x(t)) dtx 

and the Orlicz space L*(/.~) = {x E F(/x): I,~(Ax)< ~ for some h > 0}. This space 
equipped with the Luxemburg norm [[x[]~, = inf{h >0 :  I~,(x/h) <-1} is  a Banach 
space. Assume that the Orlicz function @ satisfies the Az-condition for all u E R 1 
(i.e. there exists a positive number ~7 such that the inequality qb(2u) ~< ~7@(u) holds 
for all u @R1). Then the cone of nonnegative functions in this space has 
properties (*) and (**) but it is not necessarily nuclear [1]. The Banach space 
L'~(/z) is not reflexive unless the dual function qb' of @ satisfies Az-condition [12]. 

R E M A R K S  2.11. 
1. In [1, 11] a class of so called completely correct cones (that means closed 

convex cones with property (**)) in Banach spaces has been investigated in detail. 
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In particular, it was shown that these cones have also property (*) and a cone K 
has property (**) if and only if the norm of E satisfies conditions C1-C5 on K. 

2. Let ~ be a class of cones ensuring the existence of efficient points in a 
compact set in a topological vector space (see the definition in Section 1). Since 
K E ~ whatever K is acute, Proposition 2.8 implies that if there is a family of 
functions {f/: i E 5~} satisfying C15C3 on K (for example, if K is nuclear) then 
K E ~ .  

3. Existence Theorems 

Let A be a given nonempty set in a topological vector space E ordered by a 
convex cone K. 

One of the most interesting questions in the theory of vector optimization is to 
study the conditions ensuring the existence of efficient points in a given set. 
Another  question which is important in the theory of decision making is about the 
existence of an efficient alternative which is smaller (with respect to the ordering 
cone) than a given alternative. In the other words, for every point y in the given 
set A we would like to know whether there is an efficient point x such that x <~ y. 
That is the domination property (briefly denoted by (DP)) which first was 
introduced by Vogel and recently investigated in several works of Benson, Luc, 
Henig (see [10] and the references therein), Isac [8], Postolica [14]. 

The aim of this section is to give some sufficient conditions for a nonempty set 
in a locally convex space to have efficient points and the domination property. 
The sets under our investigation are assumed to be closed and bounded in the 
usual sense or with respect to a cone. By using the notions of cones with 
properties (*) and (**) considered in the previous section we shall improve some 
results of [3], [14]. 

Let us recall here some facts in the theory of existence of efficient points. For a 
set A and x E E, A x denotes the section A fq (x - K) of A at x. A set A is said to 
be K-complete if it has no cover of the form { (x , - c IK)C:  a E ~ }  with {x~: 
a E S f} being a decreasing net in A. The reader interested in criterions of 
K-completeness is referred to ([10] Lemma 3.5, Chap. 2). We say that (DP) holds 
for A with respect to K if A s Min(AIK ) + K. 

T H E O R E M  3.1. ([10 Theorems 3.3 and 4.3, Chap. 2). Assume that K is correct 
and A is nonempty set in E. Then 

(i) Min(AIK) is nonempty if and only i rA  has a nonempty K-complete section; 
(ii) (DP) holds for A with respect to K if and only if for each y E A ,  there is 

some x ~ Ay such that A x is K-complete. 

PROPOSITION 3.2. (i) I f  K is acute, then Min(AlclK ) C Min(AIK ). 
(ii) I f  K is acute, correct and (DP) holds for A with respect to clK, then (DP) 

holds for A with respect to K. 
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Proof. (i) The assertion follows immediately from ([10] Proposition 2.4, Chap. 
2). 

(ii) Suppose that (DP) holds for A with respect to clK, i.e. Min(AlclK ) is 
nonempty and A C Min(AlclK ) + clK. Observe that by virtue of the assertion (i), 
Min(AIK ) is nonempty. We have to show that (DP) holds for A with respect to K 
i.e. A C Min(AIK ) + K. Noticing that 

A = {a: =lb ~A',{a}: a @ b  + K }  U {a: 71b EA\{a}:  a ~ b  + K} 

we get 

A C (A + KX{0}) U Min(AIK ) . 

Since A C Min(AlclK ) + clK, Min(AlclK ) C Min(A[K) and K is correct we obtain 

A C (A + K\{0}) t0 Min(AIK ) 

C (Min(AlclK) + clK + K~{O}) U Min(AIK)) 

C (Min(AIK) +/s U Min(AIK ) 

= Min(A[K) + K ,  

which concludes the proof. 

In the remainder of this paper let E be a locally convex space with the topology 
induced by a family {PF i E J }  of seminorms and ordered by a convex cone K. 

Now, using the notion of cones with property (**) we shall state a new 
condition for a set to be K-complete. The following proposition will play an 
important role in establishing the existence of efficient points. 

PROPOSITION 3.3. Assume that K has property (**). Then any bounded 
complete set A is K-complete. 

Proof. Let (x~: a E ~ )  be a decreasing net in A. Making use of the 
boundedness and completeness of A and property (**) of K we conclude that 
(x~: a E ~ }  converges to x ~ ~ A. Fix an arbitrary index a. Since {x,: a E ~ }  is 
decreasing we have x~ ~<x~ for each fl I> a and, therefore, x* Ex~ - clK for each 
a E ~?. Thus {(x~ - clK)C: a ~ ~Lf} can not be a cover of A, as it was to be shown. 

C O R O L L A R Y  3.3.1. Let K be a correct cone with property (**). I f  there is an 
element a E A such that the section A a = A n (a - K) is bounded and complete, 
then Min(AIK ) is nonempty. I r A  a is bounded and complete for every a E A,  then 
(DP) holds. 

Proof. An immediate consequence of Theorem 3.1 and Proposition 3.3. 



274 TRUONG XUAN DUC HA 

C O R O L L A R Y  3.3.2. Suppose that the cone clK has property (**). I f  there is an 
element a E A such that the set A n ( a -  clK) is bounded and complete, then 
Min(AIK ) is nonempty. I f  in addition K is correct and A O (a - clK) is bounded 
and complete for each a E A,  then (DP) holds for A with respect to K. 

Proof. Observe that by Proposition 2.7 the cone K is acute. The assertion 
follows from Corollary 3.3.1 and Proposition 3.2. 

As an immediate consequence of Corollary 3.3.2 we have the following 

C O R O L L A R Y  3.3.3. Suppose that the cone clK has property (**) and A is 
complete and bounded. Then Min(AIK ) is nonempty. I f  in addition K is correct, 
then (DP) holds for A with respect to K. 

Recall that E is quasicomplete if any closed bounded subset of E is complete. 
Using the notion of quasicompleteness we can derive from the Corollaries 
3.3.1-3.3.3 some facts about the existence of efficient points for sets in quasicom- 
plete sets. For  example, we have the following 

C O R O L L A R Y  3.3.4. Suppose that E is quasicomplete and the cone clK has 
property (**). I f  there is an element a E E such that A n (a - clK) is closed and 
bounded, then Min(A[K) is nonempty. I r A  n (a - c l K )  is closed and bounded for 
each a E A and K is correct, then (DP) holds for A with respect to K. 

Our main theorem about the existence of efficient points in closed bounded sets 

reads as follows 

T H E O R E M  3.4. Suppose that E is quasicomplete and the cone clK has property 
(**). Then for any nonempty closed bounded set A,  Min(A[K) is nonempty. I f  K 
is correct, then (DP) holds for A with respect to K. 

Proof. An immediate consequence of Corollary 3.3.4. 

R E M A R K S  3.5. We would like to say some words on the existence of efficient 
points in a nonempty closed bounded set. As it was shown [5] such a set may have 
not  any efficient point even when it is in a Banach space with a closed convex 
pointed cone. A question worthy of interest is under which conditions a nonempty 
closed bounded set has efficient points. A result due to Borwein [3] shows that if 
K is closed these conditions are the boundedly order  completeness of E and the 
Daniell  property of K. Theorem 3.4 is a new existence result without the 
closedness assumption on K and it can be applied, for instance, to the cone K 0 of 

P Further,  it should be remarked that neither the positive functions in L t0,11, Cf0,11" 
closedness and boundedness of A nor property (**) of the cone K can be 
dropped.  To see this let us consider the following examples. 

Example 3.5.1. Let K be the nonnegative orthant in R n, A = - K  and B = {x E 
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K, 0 < Ilxll ~< 1). The dosed set A is unbounded, the bounded set B is not dosed 
and neither A nor B has efficient points. 

Example 3.5.2. (Sterna-Karwat [16], see also [10] p. 51). Let s be the vector 
space of all sequences x = {xm} such that xm = 0 for all but a finite number of 
choice for m. It is a quasicomplete space if we provide it with the norm 

]]xt] = max{Ix,~l: m = 1, 2 . . . . .  ) .  

Let  K be the cone composed of zero and of sequences whose last nonzero term is 
positive. Holmes called such a cone ubiquitous. This cone has neither property 
(*) nor property (**). Now let e, stay for the vector with the unique nonzero 
components being 1 at the n-place. Consider the set 

A=(x0) U( 0 ~ x i : n = l , 2  . . . .  } ,  
n = l  i = 1  

where 

X o = e 1 

n -1  

x n = ~ ei/2 n - l -  e j 2  n-1 ' 
i = 1  

Then A is compact because 

lira ~ xi = x o . 
n - - ~  i = 1  

Furthermore,  

n + l  

X0 2> Xi ~ E Xi 
i=l i = 1  

which shows that Min(AIK)  is empty. 

n ~ > l .  

PROPOSITION 3.6. Assume that 
(i) K is correct and has property (**); 

(ii) For a nonempty set A in E there is an element a E E such that (A + K)  n 
(a - K )  is bounded and complete. 

Then Min ( AI K  ) is nonempty. I f  for every a E A the set (A  + K)  N (a - K)  is 
bounded and complete then (DP) holds. 

Proof. Firstly remark that in view of Proposition 2.6 K is pointed. Further, 
setting A' ~ (A + K) O (a - K),  A '  a = A' - a we get 0 E A '  a and A '  a = A', O ( - K ) .  
Therefore,  A'a is a section of A'~ at 0. Since A' is bounded complete, this section 
is bounded complete and by virtue of Proposition 3.3, it is K-complete. Theorem 
3.1 applied to the set A'  shows that Min(A ' IK)  is nonempty. 
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The remainder  of this proof  is as in the proof  of Theorem 1 in [14]. Firstly, we 
show that Min(A'[K)CMin(A[K).  Indeed,  if x is an arbitrary e lement  in 

Min(A'[K)\A, then by the definition of A'  there exist a 0 E A and k, k I E K\{0} 

such that x = a  0 + k = a - k l ,  that is a 0~<x. On the other hand, a 0 = a - ( k +  
kl)  C (A + K)  f-I (a - K)  = A'  and a 0 < x, a contradiction. Hence  Min(A'IK ) C A. 
Suppose now that x EMin(A'IK)UVIin(AIK ). Then there is al C A  such that 

x - a l E K ~ { 0 } .  Consequently,  a t E x - K C a - K  and a ~ A C A + K ,  that 
means a I ~ A',  contradicting the fact that x is an efficient point of A'. Therefore ,  
Min(A'[K) C Min(AIK) and Min(A[K) is nonempty.  

Suppose now that for every a ~ A,  the s e t  A'  = (A + K)  fq (a - K)  is bounded 

and complete.  Then,  as it was just shown, there is an element  a o ~ Min(A'[K)C 
Min(AIK). By the definition of A',  a ~ a  0 + K. Hence a Ea o + KCMin(A ' IK)  + 
K C Min(A[K)+ K and (DP) holds. Thus, the theorem is proven. 

We are ready now to formulate the existence theorems for nonempty  sets which 
are closed and bounded with respect to the ordering cone. We say that A is 
K-closed [10] if A + clK is closed and A is K-bounded [8, 10] if there is a 

nonempty  bounded set A 0 such that A C A 0 + K. It is clear that any bounded set 
is K-bounded  but the cone K being K-bounded is unbounded.  Let  A = [0, 1) C 
R 1, K = [0, oo) then the set A is K-closed but it is not closed. The following 

examples  show that  the class of K-closed K-bounded sets does not coincide with 
the class of closed bounded sets. 

E X A M P L E S  3.7. 

Example 3.7.1. Let E be the Banach space Ct0,11 of continuous functions 
defined on [0, 1], K be the cone of nonnegative increasing functions and A = - K .  

In view of Weierstrass '  theorem,  any continuous function can be approximated by 
polynomials  while the later are representable as differences of nonnegative 
increasing functions. Thus, E = cl(K - K). On the other hand, the function x(.) 
defined by x(t)= t cos(~-/2t) for t v a 0 and x ( 0 ) =  0 can not be represented as a 
difference of nonnegative increasing functions. Therefore,  K - K ~ E and K - K 

is not closed, that means the closed set A = - K  is not K-closed. Now let 
A = {x E - g ,  Ilxll ~ 1}. By the same argument  as above,  one can verify that the 
closed bounded set A is not K-closed. 

Example 3.7.2. Let E be the Orlicz space L*(/x)  whose function ~b satisfies 
A2-condition and K be the cone of nonnegative functions as in Example  2.10.3. 

Le t  C be a convex compact  set such that 0 E C and 3x 0 E C n K, IIx011 > 1. Let  
A = {x E g f'l C, Ilxll/> a}\{tXo, t ~ (0, 1)). it is clear that A is bounded but is not 
closed. We claim that A is K-closed. Indeed,  given a sequence (a m + km)m~l 
converging to b with a m E A, k m E K. Since A is contained in a compact  set C, we 
can assume that a m converges to a E C and k m converges to k E K. If  a E A the 
proof  is finished. Assume that a E CkA. Then a E {tx o, t E (1, oo)} and a = toX o 
with t 0 > 1 .  Since b = a + k  we have b= toX o + k = x  o+(t o - 1 ) x  o + k .  By the 
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assumption, we get (t o - 1)x 0 + k E K and therefore~ b ~ A + K. Thus A is 
K-closed. 

T H E O R E M  3.8. Suppose that E is quasicomplete and K is a closed convex cone 
with properties (*) and (**). Then for any nonempty K-closed K-bounded set A,  
Min(AIK ) is nonempty and (DP) holds. 

Proof. Let  a E A be an arbitrary element. Consider the set A ' =  (A + K ) n  
(a - K).  It is clear that A'  is closed. Since A is K-bounded,  there is a bounded set 
A 0 in E such that A C (A 0 + K).  Therefore,  A' C (A 0 + K)  n (a - K) and, by 
virtue of property (*), it is bounded too. In view of the quasicompleteness of E 
the set A' is then complete. All conditions of Proposition 3.6 are satisfied and the 
assertion follows. 

T H E O R E M  3.9. Suppose that E is quasicomplete and the cone cIK has properties 
(*) and (**). Then for any nonempty K-closed K-bounded set A,  Min(AIK ) is 
nonempty and, if in addition K is correct, then (DP) holds for A with respect to K. 

Proof. Observe first that being K-closed and K-bounded the set A is clK-closed 
and clK-bounded. Theorem 3.8 applied to the set A and the cone clK implies that 
Min(AlclK ) ~ ~) and A C Min(AlclK ) + clK. In view of Proposition 2.7, the cone 
K is acute and the assertion follows from Proposition 3.2. 

As an immediate consequence we have the following 

C O R O L L A R Y  3.9.1 ([14] Theorem 1). Let K be a closed nuclear cone in a 
quasicomplete space E. Then for any K-closed K-bounded set, Min(AIK) nonemp- 
ty and (DP) holds. 

R E M A R K S  3.10. 

1. The assumptions about the K-closedness and K-boundedness of A and 
properties (*), (**) of K can not be dropped. Indeed, consider the following 
examples. Let  K be the nonnegative orthant in R n, A = K~{0}, B = - K .  Then the 
K-bounded set As is not K-closed, the K-closed set B (since B + K = - K  + K = 
R n is closed) is unbounded and neither A nor B has efficient points. The set A in 
Example 3.5.2 being compact is a K-closed K-bounded set in a quasicomplete 
space but it has not any efficient point since the cone K has neither property (*) 
nor  property (**). 

2. Let  E, K, A be as in Example 3.7.2. By virtue of Theorem 3.9, the set of 
efficient points of A is nonvoid and the domination property holds for this set 
with respect not only to K but also to Ko, where K 0 is the cone of positive 
functions. The reader  can notice that some results of Borwein, Jahn, Luc (see [10] 
Chap. 2) and Postolica [14] cannot be applied to this case since the assumptions 
on the closedness (of A or K) ,  on the reflexivity (of E )  and on the nuclearity (of 
K)  are not satisfied. 
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